

Dipartimento di Fisica e Astronomia Galileo Galilei

Development and test of a compact optical device for the measurement of polarization threshold perception based on Haidinger's brushes

Federico Caichiolo, Jacopo Mottes, Charlotte Sorgenfrei, Giovanna Montagnoli, Dominga Ortolan, and Gianluca Ruffato Department of Physics and Astronomy "G. Galilei", University of Padova, Padova, Italy

Entoptic phenomena

Entoptic phenomena are visual effects not originated by external objects or sources but due to the interaction of light with the anatomical and physiological structure of the eye:

- Useful individual tools for visual system knowledge and inspection
- They can provide information about the health of the visual system
- Early and non-invasive diagnosis of suspected diseases or anomalies

We conducted an on-line survey on a group of $\mathbf{3 5 0}$ people with different sex and age:

Università

Have you ever heard about it before?

Have you ever experienced it before?

Photopsies (or phosphenes)

Have you ever heard about it before?

Blue field effect and Purkinje vascular tree

heard about it?

heard about it?

Haidinger's brushes

Have you ever heard about it before?

Have you ever experienced it before?

Haidinger's brushes

polarization plane

Entoptic phenomenon: not originated by an external object but due to the interaction of polarized light with the anatomic structure of the eye. Noticed and described for the first time in 1844 looking the sky at 90° with respect to the sun. Main properties:
> It subtends a visual angle of approximately 3° around the locus of fixation
> Oriented mostly perpendicular to the polarization plane
> It is erased soon by neural adaptation unless the head slightly rotates around the primary visual axis
> Colour and contrast depend on the input illumination

Human retina and foveal structure

Università degli Studi di Padova

The retina has a multilayer (10) structure made of specialized neuron cells and synapses for image translation into electric signals which are integrated, collected, and transmitted to the brain.

It is not homogeneous: in correspondence of the lens focus, it is much thinner in order to promote the exposure of photoreceptors (cones/rods) to light. Moreover, this zone (fovea) is characterized by a peak in the density of cones (maximum acuity).

The foveal depression

Since birth, over about the next 25 weeks, foveal ganglion cells and inner nuclear layer cells migrate peripherally, creating the familiar foveal depression at about 15 months. Peripheral photoreceptor cells migrate towards the fovea from before birth to at least 45 months. The result is a stretching and radial distribution of cone pedicles (Henle's fibres).

[^0]
Dichroism of macular pigments

The macula is characterized by a high density of pigments. These pigments have long molecules and therefore dichroic behavior: they preferably absorb light polarized parallel to the long axis of the molecule.
e.g. lutein, or zeaxanthin (isomeric)

Fundamental protective and preventive function: absorption of short wavelengths (70% of $400-500 \mathrm{~nm}$) to prevent photochemical damage and reduce scattering (improved acuity), strong antioxidant behaviour. Dietary origin.

An integrated radial polarizer

The pigments, mostly trapped inside the lipidic membranes of Henle's fibres are lipophilic and tend to orient perpendicularly to them, which are in turn arranged radially.

The result is a radial polarizer for blue light in the fovea!

transmitted pattern

The foveal radial polarizer

Haidinger's brushes

The combination of all those effects gives rise to Haidinger's brushes formation:

BLUE LIGHT

dark brushes over a blue background

WHITE LIGHT

yellow (green + red) brushes over a white background

A setup to measure HB perception

D\#: diffusers
L\#: lenses ($f=3.5 \mathrm{~cm}$)

Psychophysical test

Test in blue light. 2 protocols in sequence, one eye at once:
descending method of limits

The polarization degree decreases at steps of 10% until the HB pattern is no longer perceivable
staircase one-up two-down

The user is asked the rotation direction: $+2 \%$ when wrong answer, two right answers to trigger a reversal (-2%)

Test-retest reliability

Good test-retest reliability
>25 trials per test: reasonable compromise between average number of reversals and total time of the test to prevent afterimages and eye fatigue

Tests in blue light

Università

Tests on a group of 113 healthy individuals:

- age 6-77 years old (average 30)
- 33.6% men - 67.4% women
- no macular diseases

Fits with a log-normal curve:

$$
f(x)=\frac{1}{\sqrt{2 \pi} \sigma x} e^{-\frac{(\ln x-\mu)^{2}}{2 \sigma^{2}}}
$$

Polarization degree threshold for the best eye: $(\mathbf{1 5 . 8} \pm \mathbf{1 . 0}) \%$
J. Mottes, D. Ortolan, and G. Ruffato, Haidinger's brusb: psychophysical analysis of an entoptic effect, Vision Research 199, 108076 (2022)
(a)

(c)

(b)

(d)

Tests in blue light

$>$ No correlation with sex, age, or refractive errors
$>$ Difference between the two eyes, but learning effect to be considered (right eye first)
$>$ Only 29% of the tested individuals reported the best performance with the dominant eye (right eye for 69%) (other types of dominance should be considered)

Tests in white light

$>$ Subset of the previous population: 31 subjects from 11 to 69 years old (average age of 32), 45.2% men, 54.8% women
$>$ Average thresholds: best eye $(55.2 \pm 2.4) \%$, worst eye $(58.8 \pm 2.5) \%\left(^{*}\right)$
$>$ No correlation with sex (M: 51.9 $\pm 2.1 \%$, W: $56.9 \pm 2.6 \%$), age, or refractive errors
$>$ Difference between the two eyes lower than 12%
$>$ Only 48% of the tested individuals recorded the best performance with the dominant eye
${ }^{(*)}$ In perfect agreement with [S.E. Temple, et al., Proc. Royal Soc. B 282, 1811 (2015)]: 56\% (23 people)

> Improved electronics and optical architecture
> Improved stability and performance
$>$ Specific software developed
$>$ Assembling of 10 prototypes for didactics and optometric analyses

Specific software

Specific software

Perform the average among the inversion points (+ the last one) and convert into polarization ratio (/255*100)

Conclusions and perspectives

$>$ The human visual system can perceive the degree of polarization of light with a low average threshold: 16% in blue light (maximum contrast) in healthy individuals. 55% in white light.
$>\mathrm{HB}$ is an entopic phenomenon arising from the filtering of linearly-polarized light by the radial dichroism of Henle's fibres in the fovea
$>$ The dichroich behaviour and spatial arrangement of macular pigments play a key role in the phenomenon
$>$ The developed setup can provide quantitative estimations of the perception of the phenomenon (polarization degree threshold) and of the corneal birefringence
$>$ HB suggests a fast, economic, and non-invasive method for the early diagnosis of macular degeneration and other macular diseases or visual anomalies
$>$ Next step: analysis on patients affected by macular degeneration, lens opacity, etc. to prove the expected correlation with a higher threshold in polarization-degree perception
$>$ The setup is now one of the experimental activities at the Physics Laboratory of the degree in Optics and Optometry at the University of Padova

Thauks for youn leind attevitons!

Contact:
gianluca.ruffato@unipd.it

Macular pigment density function

The density function describes the optical density and 2D distribution of macular pigments in the macula. The parameters can vary significantly in different subjects, however in most individuals the density of the pigments decreases as a function of the distance from the center of the macula. Several categories can be identified.

Model of Berendschot and van Norren

$$
\rho(r)=A_{1} 10^{-\rho_{1} r}+A_{2} 10^{-\rho_{2}\left(r-x_{2}\right)^{2}}
$$

Category B

	Parameters ${ }^{\text {a }}$	Value Range ${ }^{\text {a }}$	Category Values ${ }^{\text {b }}$				
			B	C	D	D1	E
A_{1}	Amplitude of the exponential component	0.28 ± 0.13 (reflectance)	0.25	0.3	0.3	0.25	0.2
A_{2}	Amplitude of the Gaussian component	0.13 ± 0.07 (reflectance)	0.1	0.045	0.15	0.2	0.12
ρ_{1}	Peakedness of the exponential component	$0.38 \pm 0.24^{\circ}$	0.3	0.5	0.15	0.3	0.22
ρ_{2}	Peakedness of the Gaussian component	$1.2 \pm 1.1 \mathrm{deg}^{2}$	0.6	0.1	1.2	1.2	0.3
x_{2}	x-axis eccentricity at which the Gaussian distribution peaks	$0.70 \pm 0.66^{\circ}$	1.3	0.7	1.3	1.3	1.2
x, y	Cartesian coordinates of eccentricity relative to centre of macula/radial diattenuator						

G. P. Mission, et al., JOSA 35(6) 946-952 (2018)

More realistic simulations

The perceived constrast is lower since:
$>$ a fraction of lutein molecules is randomly arranged
$>$ peaked distribution of orientation around 25°
$>$ non-negligible absorption also along the short axis

W. Grudzinski, et al., Sci. Rep. 7, 9619 (2017)

Effect of corneal birefringence

Corneal birefringence introduces a deviation of the perceived polarization angle with respect to the input

$$
\theta_{p}=\frac{1}{2} \arccos \left(\frac{\cos \left(2\left(\theta+\theta_{0}\right)\right)}{\sqrt{1-\sin ^{2}(\Delta) \sin ^{2}\left(2\left(\theta+\theta_{0}\right)\right)}}\right)-\theta_{0}
$$ one:

The retardation value can be different for the two eyes.

[^0]: Adams, D. L. Normal and abnormal visual development in Pediatric ophthalmology and strabismus (ed. Hoyt, T.) 9-22 (2005)

