Non Invasive break-up time: automatic computerized versus manual assessment.

EAME Regional Director, IACLE

Visiting Researcher, College of Life and Health Sciences, Aston University, Birmingham. UK

Fabrizio Zeri PhD, Dip Optom (It), Dr Psychol, FIACLE, FBCLA, FEAOO, FHEA

Rizzo GC, Ponzini E. Tavazzi S.

Researcher, Department of Materials Science, and Research Centre in Optics and Optometry (COMiB) University of Milano Bicocca, Milan, Italy

Disclosure

Associations and retail **Grand Vision** (consulting relationship)

Instruments

CSO (research support) **Nikon** (consulting relationship)

Contact Lenses-Eye drops

Alcon (research support, consulting relationships and speaker honoraria) **Bausch & Lomb** (consulting relationships and speaker honoraria) **Cooper Vision** (consulting relationships and speaker honoraria) Johnson & Johnson (consulting relationships and speaker honoraria) **Schalcon** (consulting relationships)

Ophthalmic lenses

Essilor (speaker honoraria) **Hoya** (research support, consulting relationship)

Fabrizio Zeri PhD, Dip Optom (It), Dr Psychol, FIACLE, FBCLA, FEAOO, FHEA

ASSOTTICA (consulting relationships and speaker honoraria)

Tear Film instability

"Dry eye is a multifactorial disease of the ocular surface characterized by a loss of homeostasis of the tear film, and accompanied by ocular symptoms, in which <u>tear film instability</u> and hyper-osmolarity, ocular surface inflammation and damage, and neuro-sensory abnormalities play etiological roles."

J.S. Wolffsohn et al. / The Ocular Surface 15 (2017) 539–574 Contact Lens and Anterior Eye 44 (2021) 368–397 Contact Lens and Anterior Eye

James S. Wolffsohn^{a,*}, Kathy Dumbleton^b, Byki Huntjens^c, Himal Kandel^d, Shizuka Koh^e, Carolina M.E. Kunnen^f, Manbir Nagra^g, Heiko Pult^h, Anna L. Sulleyⁱ, Marta Vianya-Estopa^j, Karen Walsh^k, Stephanie Wong^k, Fiona Stapleton¹

journal homepage: www.elsevier.com/locate/clae

3.2.1. Tear film

ELSEVIEF

The tear film is an essential component in contact lens wearing comfort [139] and can impact contact lens drop out (section 7.3 and see CLEAR Maintenance Report and CLEAR Anatomy Report) [127,140]. Consequently, an appropriate examination of the tear film, the ocular surface and quantification of symptoms, is vital in contact lens fitting and aftercare [14,141]. The tear film should be observed in its natural appearance with non-invasive techniques [142], such as using cold light illumination (section 3.6.1). The pre lens tear film can also be observed to assess the *in vivo* wettability which is affected by lens deposition [139] and by the lens material and surface characteristics (see CLEAR Maintenance Report) [140].

d, they holarity,

Tear film instability assessment: Breakup time

CrossMark

Experimental Eye Research 117 (2013) 28-38

Review

Tear film stability: A review

Deborah F. Sweeney^{a,*}, Thomas J. Millar^b, Shiwani R. Raju^b

^a Office of the Pro-Vice Chancellor, University of Western Sydney, Locked Bag 1797, Sydney, Penrith, 2751 NSW, Australia
^b School of Science and Health, University of Western Sydney, Parramatta Campus, Locked Bag 1797, Sydney, Penrith, 2751 NSW, Australia

Fluorescein breakup time **fBUT**

(Norn, 1969)

the interval of time that elapses between a complete blink and the appearance of the first break in the tear film

The magic number 10

tear film stability is measured by its lack of stability

Non invasive breakup time NIBUT

(Lamble et al, 1976; Holly 1981)

the interval of time that elapses between a complete blink and the appearance of a discontinuity or break in the image of a mire or a grid pattern (keratometer mire or Placido disc) reflected on the anterior tear film surface

> NIBUT > fBU 20-45 s (Guillon & Guillon,

NIBUT: how to detect a break-up?

discontinuity or break in the image of the rings= break-up (NIBUT)

distortion of the grid patterns can be interpreted as a thinning of the film (tear thinning time; TTT i.e. pre NIBUT)

Automated NIBUT: how does it work?

- The image of the Placido disk reflected on the tear film cornea is divided in small areas of similar size (tiles).
- An automatic algorithm (examinator-free) identifies the first break-up (disruption of the projected ring) works on each of the different tiles. If at the end of the video the disruption in a tile is repristinated then every changed happened before is ignored.
- Break-up map: break-ups are displayed topographically.

Automated NIBUT: how to detect a break-up?

Break-up (discontinuity)

Automated NIBUT: discharging artifacts (tear thinning, density change in tear, bubbles, post blinking flow, lashes shadow etc)

TTT: changes in the sharpness of the edge

Automated NIBUT: discharging artifacts (tear thinning, density change in tear, bubbles, post blinking flow, lashes shadow etc)

density change in tear

Automated NIBUT: discharging artifacts (tear thinning, density change in tear, bubbles, post blinking flow, lashes shadow etc)

density change in tear

OD

0,0 s

No break-up detected

Automated NIBUT: discharging artifacts (tear thinning, density change in tear, bubbles, post blinking flow, lashes shadow etc)

OD

0,0 s

Scheinpflug camera: deleting part of information

Automated NIBUT: how to detect a break-up?

Lashes shadow: deleting part of information

Tear film instability assessment: automated NIBUT

^a Specsavers, 41 High Row, Darlington, Co Durham DL3 7QW, UK ^b Life and Health Science, Aston University, Ophthalmic Research Group, Birmingham, UK

> the first comparison between automated software to achieve a NIBUT by a topographer (Keratograph 4; OculusOptikgerate GmbH, Wetzlar, German) and a manual NIBUT performed by Keeler Tearscope showed a shorter time with the former.

Automatic versus manual NIBUT

Retrospective randomised crossover study

- To evaluate the agreement • between automatic and manual **NIBUT** measurements
- To assess the effect of clinical experience on manual NIBUT measurements

Sample

Inclusion Criteria:

- Video without blinking during the length of the recoding
- Video with a first NIBUT no longer than 17 seconds (limiting the study to length compatible with tear film instability in which information about the difference between manual and automatic assessment is more useful)
- Video presenting areas or zone grossly out of focus
- Video presenting fixation missing (due to movements of the eye or head)
- Video presenting poor quality of keratoscopic image for the presence of irregularity in the tear film (mucus, air bubble etc).

85 videos performed by Sirius+ (CSO, Florence) were selected from the COMIB database

Automatic versus manual NIBUT

Study Design: Retrospective randomised crossover study

- lacksquare
- **Observer 2:** 1 recent graduaded in Optometry (Junior) lacksquare

Procedures: Each observer had to assess the videos (played in freeware software) in random order, measuring the NIBUT.

Observer 1: Optometrist with more than 20 yrs of clinical experience (Senior)

Automatic versus manual NIBUT

Study Design: Retrospective randomised crossover study

Automatic Assessment

Agreement and correlation between automatic and manual NIBUT

Agreement and correlation between automatic and manual NIBUT: observer experience

C OPTICS AND OPT RESEARCH CENTER

BICOCCA	
8 20	
/ = 0.8x + 0.7	
e e e e e e e e e e e e e e e e e e e	
	1

Observers bias in repeated measurement of the same video

Manual NIBUT reliability: intrasession

	Observer 1
Test	CP=1.68 s; CR= 2.37 s;
Retest	CP=1.31 s; CR= 1.85 s;

Coefficient of precision (CP), coefficient of repeatability (CR) and coefficient of variation for the manual measures of NIBUT performed by Observer 1 and Observer 2 in the first session (test) and in second session (retest).

CP=1.71 s; CR= 2.41 s; CV=0.13 CV=0.11

CP=1.32 s; CR= 1.87 s; CV=0.11 CV=0.10

fBUT CP=4.5 s CR= 6.4 s CV=0.30

Manual NIBUT reliability: test retest

Procedure	Test Mean ± SD (Range) (s)	Retest (sec) Mean ± SD; Median	ICC and 95% confidence intervals	Comparisor (p value of Wilcoxon tes
Observer 1 (Mean of three measurements)	7.9 ± 3.9; (2.0-20.4)	7.0 ± 3.5; (2.0-18.4)	0.95*** (0.84 - 0.98)	P<0.001
Observer 2 (Mean of three measurements)	6.7 ± 3.5; (1.7-17.7)	6.0 ± 3.4; (1.2-17.4)	0.95*** (0.90 - 0.98)	P<0.001
Average of observers	7.3 ± 3.6; (1.9-18.7)	6.5 ± 3.4; (1.6-17.6)	0.97*** (0.82 - 0.99)	P<0.001

Coefficient of precision (CP), coefficient of repeatability (CR) and coefficient of variation for the manual measures of NIBUT performed by Observer 1 and Observer 2 in the first session (test) and in second session (retest).

Manual NIBUT reliability: test retest

so what?

- lacksquareaffected by the observer and the repetition of manual measurement, but in any case clinically negligible

Strong correlation between automated and manual NIBUT

Differences between automatic and manual measurement are

Acknowledgments

Grazie per l'attenzione

Ing. Francesco Versaci (CSO)

Contice and optometry RESEARCH CENTER UNIVERSITY OF MILANO BICOCCA

Alessandro BORGHESI Alessandro DUSE Azeezh OBAID Erika PONZINI Giulia RIZZO Riccardo ROLANDI Silvia TAVAZZI Fabrizio ZERI

