How can we determine

 what colours somebody can see?
Benjamin Evans

Doctoral student
Centre for Applied Vision Research
Vision Research Centre
City, University of London

Caffè-Scienza

3rd March 2023

Doctoral supervisors:
Dr Marisa Rodriguez-Carmona Professor John Barbur

Overview

-How do we see colour?
-Why and when is a shared perception of colour is important?

- Anomalous human colour vision?
- How can we determine the colours somebody can see?

Up front conclusions

I. The ability see and perceive colour is a product of a large number of parallel processes that occur in harmony
II. The use of colour signals can significantly enhance visual performance and, as such, it's very useful to know if an individual can make use of colour signals
III. There are many methods that have been designed for assessing human colour vision - they vary significantly in efficacy and ease of use!

Colour?

2. Aberrations

How do we 'see' colour?

"The Cones of Dunshire." Parks and Recreation, season 6, episode 9, NBC, 21 Nov. 2013.

Cone photoreceptors

Cone mosaic

Andrew Stockman 'Photoreceptors', ICVS Summer School 2020

Normalised S-, M- and L-cone spectral sensitivities from Stockman \& Sharpe (2000)

The L-, M-, and S-cone signals are processed into opponent channels

1. Red/Green (L vs M)
2. Yellow/Blue (S vs [L+M])
3. Luminance contrast (Black/White)

Visual Information Channels

- Trichromatic at the receptor level + Rods
- Three opponent electrical signals at ganglion cell level
- Horizontal and Muller cells connect receptors and ganglion cells laterally within the plexiform layers and give rise to receptor fields and colour adaptation effects

Overview

-How do we see colour?
-Why and when is a shared perception of colour is important?

- Anomalous human colour vision?
- How can we determine the colours somebody can see?

The value of colour

- Colour vision carries useful information that can greatly enhance visual performance
- In some visually demanding occupations, the use of colour signals is safety critical

Colour

- Colour vision carries useful information that can greatly enhance visual performance
- In some visually demanding occupations, the use of colour signals is safety critical
- Specific occupational requirements
- Pilots, Air Traffic Controllers \& Railways
- Maritime \& Coastguard Agency
- Electricians
- Police, Fire Service \& Armed Forces

Colour

- Colour vision carries useful information that can greatly enhance visual performance
- In some visually demanding occupations, the use of colour signals is safety critical

[^0] 232 Studios and Ian Hamilton

Why occupational requirements?

- Previous accidents
- $18755^{\text {th }}$ July - Steamship collision with a tug off the coast of Virginia
- 1875 15 ${ }^{\text {th }}$ November - Train collision in Sweden near Lagerlunda
- Both attributed to colour 'blindness'
- Solution? \rightarrow Screen for normal trichromatic colour vision

Mollon, J. D., \& Cavonius, L. R. (2012). The Lagerlunda Collision and the Introduction of Color Vision Testing. Survey of Ophthalmology, 57(2), 178-194.

Why occupational requirements?

- 2002 FedEx plane crashed short of the runway
- Prompting the National Transportation Safety Board (NTSB) to review their colour vision requirements for pilots

"The National Transportation Safety Board determines that the probable cause of the accident was the captain's and first officer's failure to establish and maintain a proper glidepath during the night visual approach to landing.
Contributing to the accident was a combination of the captain's and first officer's fatigue, the captain's and first officer's failure to adhere to company flight procedures, the captain's and flight engineer's failure to monitor the approach, and the first officer's color vision deficiency."

National Transportation Safety Board. 2004. Collision With Trees on Final Approach, Federal Express Flight 1478, Boeing 727-232, N497FE, Tallahassee, Florida, July 26, 2002. Aircraft Accident Report NTSB/AAR-04/02. Washington, DC.

Overview

- How do we see colour?
-Why and when is a shared perception of colour is important?
- Anomalous human colour vision?
- How can we determine the colours somebody can see?

How can human colour vision be abnormal?

Colour \& Colour Vision Deficiency

- At the first level of classification
- Congenital/Acquired
- Congenital
- Protan/Deutan/Tritan - depending upon the class of cone photoreceptor that is abnormal or absent

Colour vision deficiency (or colour deficiency)

Type of colour deficiency	Male (\%)	Female (\%)
Protanopia	1.01	0.02
Protanomaly	1.08	0.03
Deuteranopia	1.27	0.01
Deuteranomaly	4.63	0.36
Tritanopia	0.2 (1 in 500$)$	
Number	45,989	30,711
Total prevalence (\%)	7.99	0.42

How risk should be described in healthcare

Verbal descriptions	Risk	Risk description
Very common	1 in 1 to 1 in 10	A person in family
Common	1 in 10 to 1 in 100	A person in street
Uncommon	1 in 100 to 1 in 1,000	A person in village
Rare	1 in 1,000 to 1 in 10,000	A person in small town
Very rare	Less than 1 in 10,000	A person in large town

[^1] Simunovic, M. P. (2016). Acquired color vision deficiency. Survey of Ophthalmology, 61(2), 132-155. https://doi.org/10.1016/i.survophthal.2015.11.004

Colour vision deficiency (or colour deficiency)

Acquired Colour Vision Deficiency

- Result of ocular or general pathology, intracranial injury or prolonged drug use
- Can originate anywhere in the visual pathway
- Can be an early symptom in some pathological conditions
- Diabetes
- Optic neuropathy
- When measured and monitored can be used to assist with medical diagnoses

Acquired vs Congenital

Congenital Colour Deficiency	Acquired colour deficiency
Present at birth	Onset after birth (after 3 months)
Type and severity the same throughout life	Type and severity changes with time Visual acuity normal (except in monochromatism) Reduced visual acuity and/or visual field defects deficiency
Both eyes equally affected one type of congenital colour deficiency	
Higher prevalence in males	Monocular differences in severity
Predominantly red-green	Equal prevalence in males and females

Overview

- How do we see colour?
-Why and when is a shared perception of colour is important?
- Anomalous human colour vision?
-How can we determine the colours somebody can see?

How can we quantify human colour vision?

The 'first' colour vision tests

- [1684] Turberville - Colour naming
- [1798] Dalton (\& [1837] Seebeck) - Colour ribbons
- [1877] Stilling - First pseudoisochromatic plate test

Assessing Colour Vision

There are 3 stages in assessing an individuals colour vision: 1. Screen for normal red/green and yellow/blue colour vision
2. Classify type of colour vision defect
3. Quantify severity of the red/green and yellow/blue colour vision loss/sensitivity loss

CAD test

Holmes-Wright Lantern

Nagel Anomaloscope

City University Test (2 ${ }^{\text {nd }}$ Edition)

Colour Vision Assessment

- Pseudoisochromatic plates
- Ishihara
- American Optical - Hardy-Rand-Rittler (AO-HRR)
- Ishihara plate types [38 plate Ed.]

Examples of pseudoisochromatic plates (left: AO-HRR, right: Ishihara)

- Introduction [1]
- Transformation [2-9]
- Vanishing [10-17]
- Hidden digits [18-21]
- Classification [22-25]

Colour Vision Assessment

- Hue Discrimination
- Farnsworth D-15
- Farnsworth-Munsell 100 Hue
- City University ($2^{\text {nd }} \& 3^{\text {rd }}$ Ed.)

Colour Vision Assessment

- Hue Discrimination
- Farnsworth D-15
- Farnsworth-Munsell 100 Hue
- City University (2 ${ }^{\text {nd }} \& 3^{\text {rd }}$ Ed.)

Normal

Farnsworth D-15 Results Diagram

Colour Vision Assessment

- Spectral Anomaloscopes
- Rayleigh match

Colour Vision Assessment

- Computerised diagnostic tests
- Colour Assessment \& Diagnosis (CAD)
- Cambridge Colour Test (CCT)

CAD test

Colour Assessment \& Diagnosis Test

- Measures both red-green and yellow-blue chromatic sensitivity
- Uses dynamic luminance contrast noise to isolate colour signals
- Evidence for the independent processing of luminance and colour signals
- Colour thresholds mea cone contrast signals

are proportional to the coloured stimulus

Barbur, J. L. (2004). "Double-blindsight" revealed through the processing of color and luminance contrast defined motion signals. Progress in Brain Research, 144, 243-259. https://doi.org/10.1016/S0079-6123(03)14417-2
Barbur, J. L., Birch, J., \& Harlow, A. J. (1993). Colour vision testing using spatiotemporal luminance masking. In Colour Vision Deficiencies vol. XI (pp. 417-426). https://doi.org/10.1007/978-94-011-1856-9_42
Barbur, J. L., Harlow, A. J., \& Plant, G. T. (1994). Insights into the Different Exploits of Colour in the Visual Cortex. Proceedings of the Royal Society B: Biological Sciences, 258(1353), 327-334

Colour Assessment \& Diagnosis Test

CAD Thresholds:

$$
R G=1.22
$$

$$
Y B=1.09
$$

CAD Thresholds:
RG =11.72
$\mathrm{YB}=0.81$

Protan deficiency

CAD Thresholds:

$$
\text { RG = } 9.12
$$

$$
Y B=1.17
$$

Conclusions

I. The ability see and perceive colour is a product of a large number of parallel processes that occur in harmony
II. The use of colour signals can significantly enhance visual performance and, as such, it's very useful to know if an individual can make use of colour signals
III. There are many methods that have been designed for assessing human colour vision - they vary significantly in efficacy and ease of use!

[^0]: `Colourblind Tube Map’ developed as a collaboration between

[^1]: ${ }^{a}$ EU-assigned frequency ${ }^{b}$ Unit in which one adverse event would be expected RCOG, 2015

