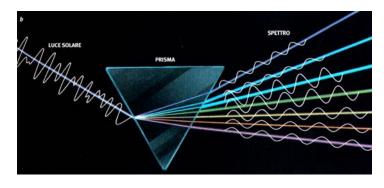
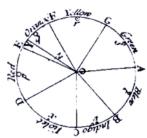
Dalla psicofisica del Colore alla prevenzione


• Dott. Simone Santacatterina Laureato in Ottica e Optometria

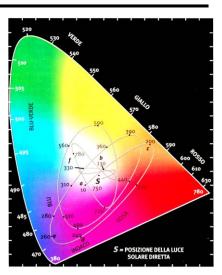
1

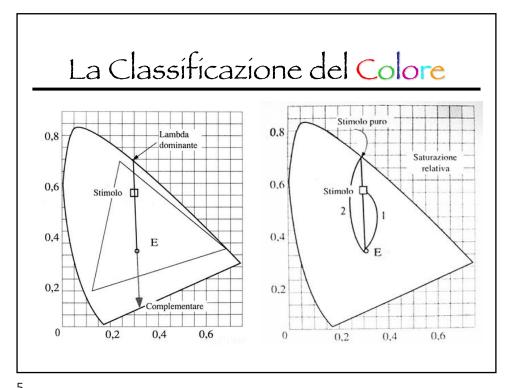

La Classificazione del Colore

• Newton fu il primo a dividere la luce bianca nelle sue componenti spettrali

La Classificazione del Colore

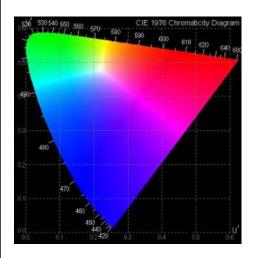
- Si e' cercato inoltre di classificare e rappresentare i vari colori
- Newton presenta per primo un sistema di classificazione che consisteva in un cerchio cosi' rappresentato


3


La Classificazione del Colore

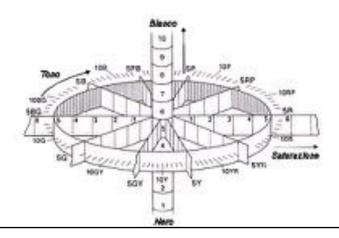
C.I.E.1931

Commission Internationale de Eclairage


- •E' il sistema utilizzato per classificare il colore e si basa sulla teoria tricromatica.
- •Sul bordo della curva si rappresentano tutti i colori puri, spettrali e non

J

CIE 1976



Perché noi utilizzeremo questo diagramma di cromaticità?

Il CIE 1976 o CIELUV è una trasformazione semplice del CIE 1931 che ha l'obiettivo di poter essere più uniforme a livello percettivo

La Classificazione del Colore

• Classificazione cromatica di Munsell

7

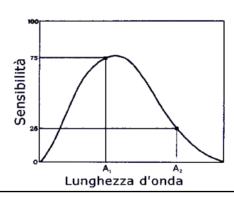

La Classificazione del Colore

- Diversa la situazione nel caso dei miscugli tra pigmenti
- Un pigmento appare di un determinato colore perche' assorbe delle onde luminose e ne riflette delle altre corrispondenti al colore che noi percepiamo
- Cosi' la sintesi sottrattiva e' la sovrapposizione di piu' pigmenti che vengono a sottrarre diverse onde luminose

Q

La Retina

- Struttura della retina
- Coni e bastoncelli
- Cellule bipolari e ganglionari



9

Percezione cromatica

- Física & Biología
- Sistema visivo e sistema uditivo a confronto
- La nostra percezione cromatica deriva da un compromesso

- Quanti diversi tipi di recettori abbiamo?
 - Un solo tipo, dotati dello stesso pigmento?

11

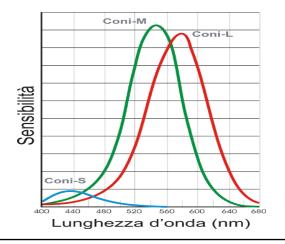
Percezione cromatica

- Bastano 2 tipologie di recettori?
 - Nessuna lunghezza d'onda monocromatica deve dare la percezione di luce bianca
 - Due coni: almeno una luce monocromatica ci apparirebbe bianca

o <u>Teoria Tricromatica</u> (1802 Young-Helmholtz)

- In ogni punto della retina devono esistere almeno tre "particelle" che sono maggiormente sensibili a tre differenti stimoli cromatici (lunghezze d'onda differenti)
- La combinazione (o sintesi) dei tre diversi output permette di creare la percezione dei colori; così come nella sintesi additiva era possibile creare qualsiasi sfumatura di colore a partire dalla mescolanza di tre colori di base

13


Percezione cromatica

o <u>Teoria Tricromatica</u> (1802 Young-Helmholtz)

- Coni S: costituiti da un pigmento (cianolabile) capace di assorbire maggiormente λ 437nm
- Coní M: costituití da un pigmento (clorolabile) capace di assorbire maggiormente λ 533nm
- Coni L: costituiti da un pigmento (eritrolabile) capace di assorbire maggiormente λ 564nm

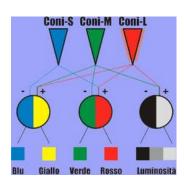
o <u>Teoría Tricromatica</u> (1802 Young-Helmholtz)

- Il colore deriva dalla ineguale stimolazione dei tre tipi di coni.
- La luce ad ampía banda spettrale stimolerà i tre coni allo stesso modo e darà la percezione del bianco

15

Percezione cromatica

o <u>Teoria Tricromatica</u> (1802 Young-Helmholtz)


- Non riesce a spiegare:
 - Perché alcuni colori se mescolati danno il bianco (colori complementari)
 - Perché se si fissa un certo colore per alcuni minuti poi si ha la percezione del colore complementare (colori consecutivi)
 - Perché nel nostro immaginario esistono alcuni colori psicologicamente puri. Cioè è impossibile immaginare che essi possano derivare dall'unione di altri.

- o Teoria dei Processi di Opponenza (Hering 1905-1925)
 - Postula l'esistenza, ad un lívello superiore rispetto quello retinico, di tre diverse vie che contribuiscono alla percezione cromatica.
 - Per via si intende un gruppo o sequenza di cellule ad opponenza cromatica (eccitate da alcune λ , inibite da altre).
 - Ad ogní vía corrisponde una coppía di colori.
 - L'eccitazione o inibizione delle diverse vie è regolata dai tre tipi di recettori retinici .

17

Percezione cromatica

- o Teoría dei Processi di Opponenza (Hering)
- Vie cerebrali:
 - Canale del Rosso/Verde
 - Canale del Giallo/Blu
 - Canale del Biarico/Nero

o Teoria dei Processi di Opponenza (Hering)

- Le prime due vie sono caratterizzate da coppie di colori antagonisti, cioè la stimolazione di uno ne esclude automaticamente quella dell'altro (si spiega il fenomeno dei colori complementari).
- Condividendo ogni coppia un canale, la rimozione dello stimolo di un colore produce per un piccolo istante l'eccitazione dell'antagonista.
- La terza via (bianco/nero) non lavora sull'antagonismo ma regola i livelli di saturazione.

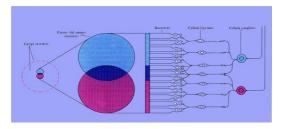
19

Percezione cromatica

- Teoria Tricromatica e Teoria dei Processi di Opponenza non riescono a spiegare:
 - Fenomeni di costanza del colore: ad una variazione della condizione di illuminazione ambientale non corrisponde una variazione percettiva

All'aperto

Al chiuso



21

Percezione cromatica

o Edwin Land (1985)

 Campo recettivo: zona retinica costituita solo da quei recettori che fanno capo ad una cellula specifica.

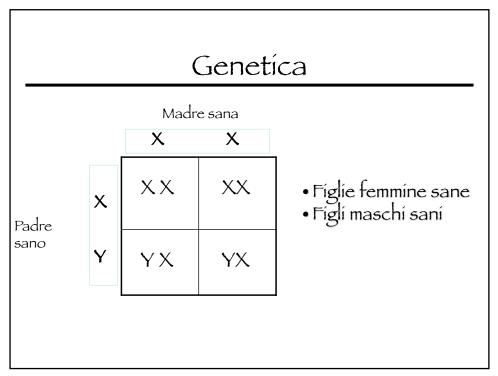
o Edwin Land (1985) Retinex (retina + cortex)

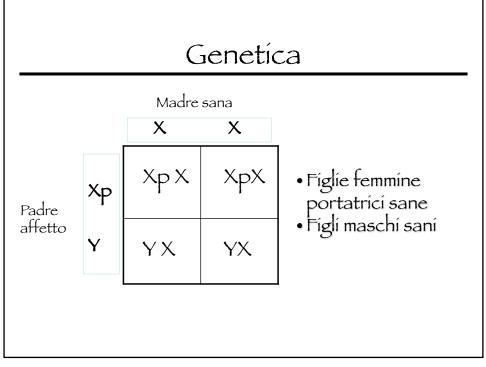
La percezione cromatica dipende da come il nostro sistema cerebrale interpreta la scena nella quale un colore si trova.

- La percezione del marrone
- Si spiegano tutti i fenomeni di costanza
- Il colore, ai nostri occhi, non è un valore assoluto che dipende esclusivamente da valori oggettivi come la lunghezza d'onda.

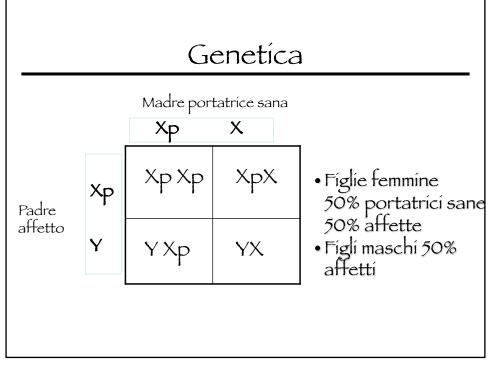
23

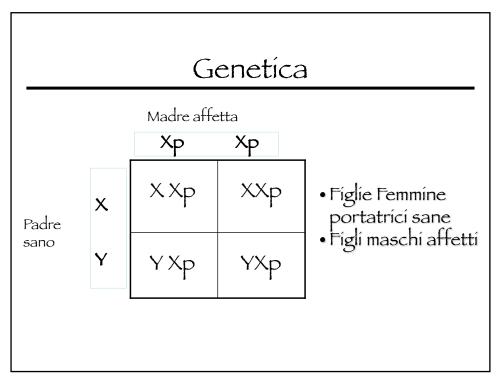
Anomalie nella Visione dei Colori

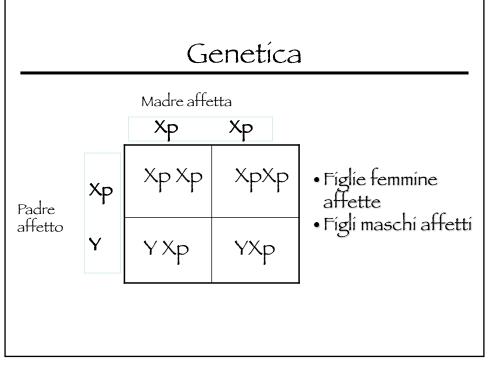

- La classificazione piu' comune fu di Von Kries (1897)
 - Distingue le anomalie dalle anopsie
 - Si basa sulla teoria tricromatica


- Tricromia anomala (difficoltà nel distinguere i colori)
 - Proto-anomalia (difficoltà nel distinguere il rosso)
 - Deutero-anomalia (difficoltà nel distinguere il verde)
 - Trito-anomalia (difficoltà nel distinguere il blu)
 - Tartan-anomalía (difficoltà nel distinguere il giallo)


25

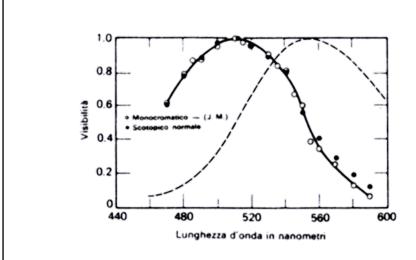

Anomalie nella Visione dei Colori


- Dícromía
 - Cecítà al rosso-verde
 - ✓ Protanopía (cecítà al rosso)
 - ✓ Deuteranopía (cecítà al verde)
 - Cecità al giallo-blu
 - ✓ Tritanopia
- Monocromía (totale cecítà al colore)



Problemi nella percezione cromatica	maschi	femmine	
Generale	~8%		
Tricromia Anomala			
protanomalia	1%	0.01%	
deutanomalia	5%	0.4% rara	
tritanomalia	rara		
Dicromia			
protanopia	1%	0.01%	
deuteranopia	1.5%	0.01%	
tritanopia*	0.008%	0.008% rara	
Monocromia	rara		

33


Anomalie nella Visione dei Colori

- Come fare a distinguere le varie anomalie?
- Il primo strumento fu ideato da un físico inglese John William Strutt
- Conosciuto meglio come Lord Rayleight

- Casí di completa cecità sono rari
- In questi casi vi è una bassa AV (1/10) in condizione di luce fotopica
- Tutto il comportamento indica che i coni o non funzionano o mancano del tutto

35

Anomalie nella Visione dei Colori

- La ricerca continua e nel 1960 vennero costruiti microspettrofotometri per analizzare l'assorbanza dei pigmenti nei fotorecettori.
- I risultati furono compatibili con gli studi psicofisici

37

Anomalie nella Visione dei Colori

- Nel 1970 si dimostrò che nei dicromati l'assorbimento di particolari lunghezze d'onda non era normale
- Negli anni 80 iniziarono gli studi genetici, rivolgendo particolare attenzione nelle differenze tra soggetti normali e "anomali"

- Philippe Lanthony nel 1986, compiendo studi genetici sperimentali scoprì che:
- La molecola del pigmento dei coni del rosso differisce da quella del verde solo per 15 amminoacidi su 364
- Risultò un polimorfismo nella strutturta molecolare

39

Anomalie nella Visione dei Colori

• La piccola differenza tra i coni rossi e verdi suggerisce che entrambi derivano da un pigmento ancestrale presente in un'epoca abbastanza recente dell'evoluzione

- I soggetti risultati privi del recettore per il rosso, in realtà hanno un gene ibrido.
- I tricromati anomali hanno tutti un gene ibrido in aggiunta ad alcuni o a tutti i geni normali per i pigmenti visivi.

41

Anomalie nella Visione dei Colori

- Vi sono ancora delle domande a cui non sappiamo rispondere:
- Che cosa conferisce ai pigmenti il loro caratteristico spettro di assorbimento?
- In che modo ciascun fotorecettore decide quale pigmento produrre?
- Come si formano le connessioni tra i fotorecettori e i neuroni a livello più elevato?

- È il cervello che interpreta tutti i segnali come colori
- Nell 1993 Semír Zekí riconobbe delle aree nel cervello impegnate in compiti specifici
- Chiamò V4 quella deputata alla visione dei colori

43

Anomalie nella Visione dei Colori

- Per conoscere ciò che è visibile, il cervello non può dunque limitarsi ad analizzare le immagini presentate alla retina, ma deve costruirsi un mondo visivo.
- A questo scopo, il cervello ha sviluppato un elaborato meccanismo neurale.

IL COLORE, COME IL BIANCO E NERO, E' SOLO UNO DEI MEZZI PER PERCEPIRE LE FORME.

Test

- I test della visione del colore dovrebbero far parte di ogni esame optometrico di base.
- Sí eseguono:
 - Binocularmente per i difetti congeniti e screening
 - Monocularmente per i difetti acquisiti

45

Test

- Esistono differenti tipologie di test:
 - Anomaloscopio

• Lord Raileight (originale)	RV
Neítz OT	RV
Oculus Heidelberg	RV e GB
Nagel (Desaturato BluGreen)	RV eGB

- Tavole pseudoisocromatiche

• Ishihara	RV
• SPP1&SPP2	RV e GB
 Hardy Rand and Rittler (HRR) 	RV e GB

Test

• Farnsworth

- Farnsworth Munsell 100 Hue	RV GB
- Lanthony New Colour Test	RV GB
- D 15 Dichotomous Test	RV GB
- Lanthony Desaturated Color Test	RV GB

47

Test

- Differenze tra i più conosciuti Test:
 - Le Tavole pseudoisocromatiche di Ishihara sono un test incompleto, in quanto indagano solo le deficienze nel rosso-verde, ma viene utilizzato negli screening perché è semplice e veloce.
 - Il Farnsworth FMIOOH classifica l'anomalia e ne da la severità, ma è molto lento (85).
 - L'HRR viene utilizzato negli screening perché semplice, veloce e completo.

Test

- Perché eseguire i test?
 - Alcune categorie di lavoratori sono più sensibili ai deficit che coinvolgono la visione dei colori
 - (Dentisti, elettronici, ferrotranvieri, infermieri, ...)
 - L'esecuzione dei test in modo monoculare o differenze rispetto a risultati ottenuti precedentemente, possono indicare la presenza di un difetto acquisito.

49

Classificazione della anomalie acquisite

- Secondo Kollner (1912) questa è la «regola» generale: le problematiche retiniche sarebbero le maggiori responsabili dei difetti delle anomalie sull'asse giallo-blu (S-mechanism), mentre per le anomalie del nervo ottico invece sono più comuni le anomalie dell'asse rosso-verde (M-L mechanism);
- Questa «regola» di fatto non spiega diverse situazioni

Classificazione della anomalie acquisite

Secondo Verriest (1963) potremmo così sintetizzare: Tipo I red-green (simil protanope)

tricromatico -> processo atrofia coroideale

dicromatico -> Stargardt's

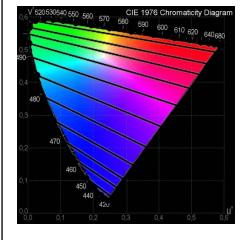
Tipo II red-green (simil deuteranope)

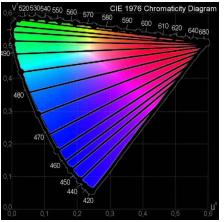
tricromatico -> Usher's, disfunzioni del nervo ottico, neurite ottica, ambliopia tossica, atrofia ottica, malattia associata al chiasma

dicromatico -> degenerazione corioretinica periferica, degenerazione coroideale miopica, RRD, CSR e corioretiniti
Tipo III tritan -> retinopatite vascolare e papilledema, glaucoma, atrofia ottica dominante

51

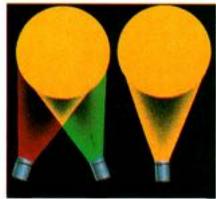
Classificazione della anomalie acquisite


 In presenza di cataratta sappiamo che avremo dei risultati ambigui causati dall'assorbimento delle corte lunghezze d'onda (< 500/520 nm).


Conclusione

- Le anomalie di tipo acquisito dell'asse giallo-blu sono circa il doppio rispetto a quelle dell'asse rosso-verde, mentre quelle di tipo genetico sono nettamente dominanti quelle sull'asse rosso-verde rispetto a quelle del giallo-blu.
- Le anomalie genetiche hanno una definizione precisa, rispetto ai risultati dei test, mentre quelle aquisite sono di più difficile interpretazione.
- La diagnosi di una patologia è un atto medico e non deferibile ad un professionista sanitario non medico.

53


Assi di confusione

Anomaloscopio di Raylight

visione normale dei colori

La zona a sinistra varia da puro <mark>rosso</mark> (73 unità) a puro verde (0 unità)

La zona a destra varía solo in luminanza da <mark>giallo</mark> scuro (O unità) a giallo luminoso (87 unità)

Un soggetto normale riferisce di vedere l'uguaglianza con valori di 40 unità per rosso /verde e 15 unità per la luminanza del giallo

55

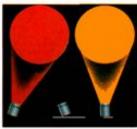
Anomalie nella Visione dei Colori

Anomaloscopio di Raylight

Fase iniziale: Partendo dai valori "normali" anche i soggetti dicromati diranno di percepire l'uguaglianza tra le due zone

Uguaglianza di un Soggetto Protanope

L'uguaglianza viene accettata sia nel caso in cui si utilizzi puro verde che puro rosso (range soggetti normali max 4 unità)


La lumínanza del gíallo è alta se utilizza verde oppure bassa se utilizza maggiormente rosso

Puro verde

Puro rosso

Anomaloscopio di Raylight Uguaglianza di un soggetto Deuteranope

L'uguaglianza viene accettata sia nel caso in cui si utilizzi puro verde che puro rosso (range soggetti normali max 4 unità)

La luminanza del giallo rimane costante (15 unità) al variare di R //

Puro verde

Puro rosso

57

Anomalie nella Visione dei Colori

Anomaloscopio di Raylight

Fase iniziale: Partendo dai valori "normali" i soggetti anomali diranno di NON percepire l'uguaglianza tra le due zone

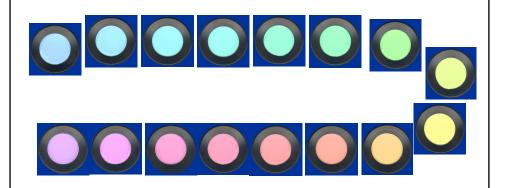
Uguaglianza di un soggetto Protanomalo

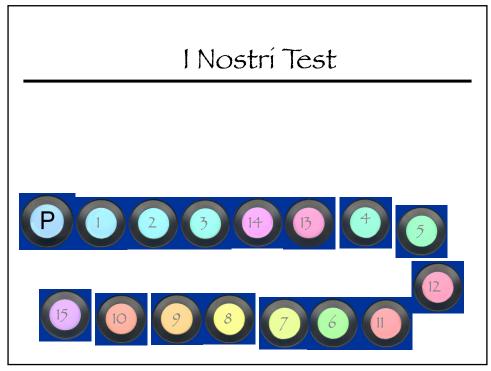
Il soggetto protanomalo ci riferirà di percepire la zona di sinistra verde

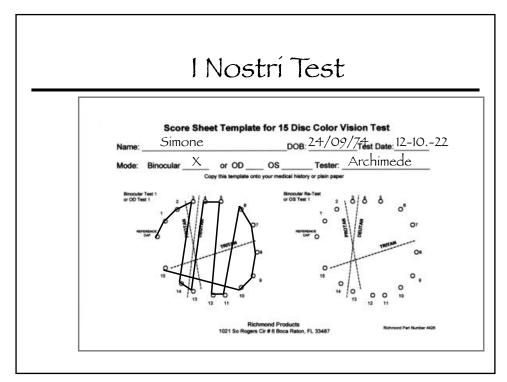
Per ottenere l'uguaglianza dovrà utilizzare più rosso rispetto al verde (valori superiori a 45) Il calcolo del range (come nei casi precedenti) ci indica la gravità del difetto

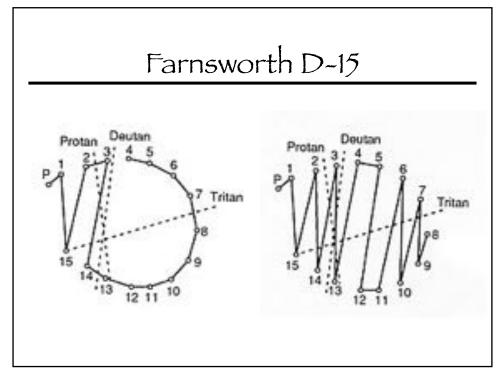
La luminanza del giallo è alta se utilizza verde oppure bassa se utilizza maggiormente rosso

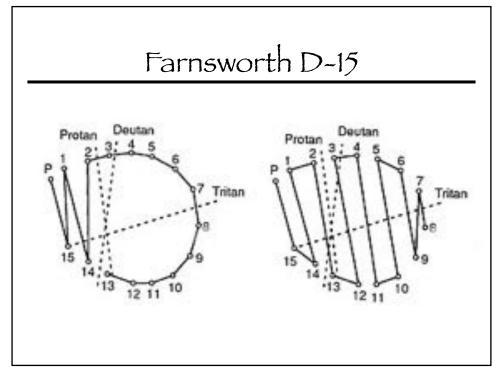
Anomaloscopio di Raylight

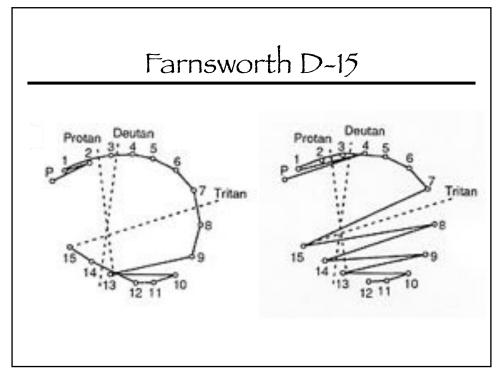

Il soggetto deuteranomalo ci riferirà di percepire la zona di sinistra rossa Per ottenere l'uguaglianza dovrà utilizzare più verde rispetto al rosso (valori inferiori a 35) Il calcolo del range (come nei casi precedenti) ci indica la gravità del difetto

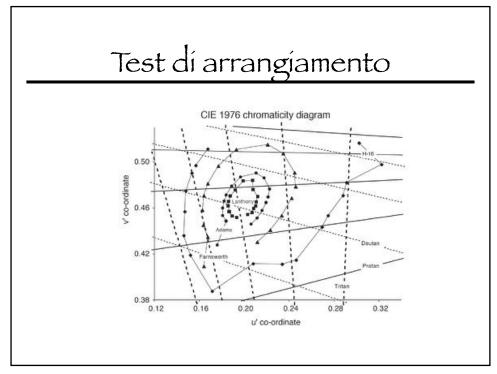

La luminanza del giallo rimane costante (15 unità) al variare di R/V

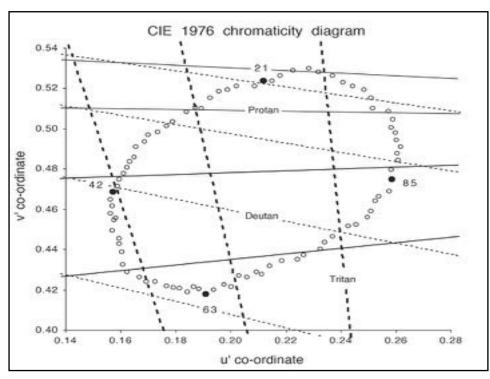

59

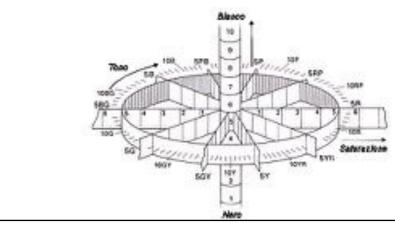

I Nostrí Test

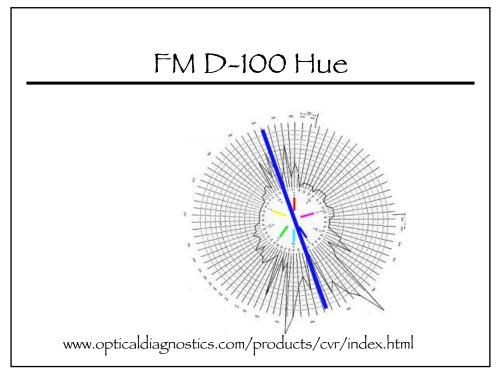

L'Anthony 15 Desaturated Color Test

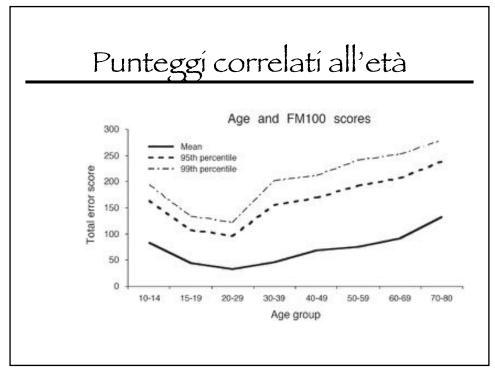


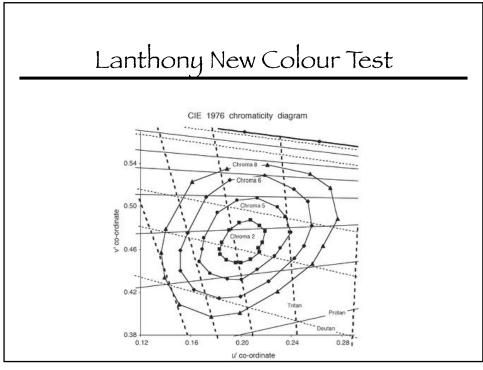




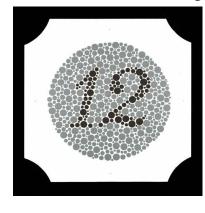


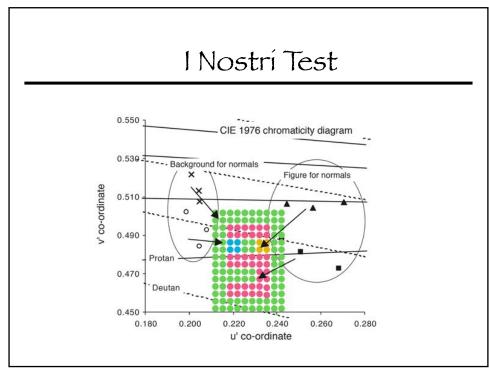




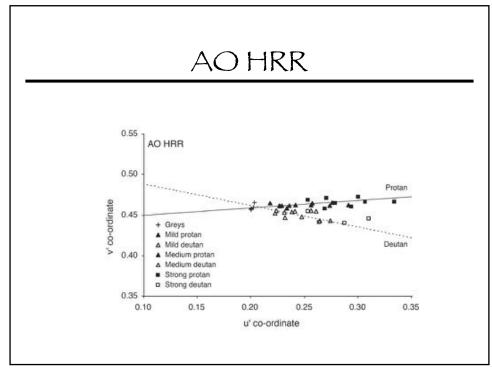

<u>La Natura</u> della Luce

• Classificazione cromatica di Munsell





I Nostrí Test


• Ishihara's Tests for Ocular Deficiency

• HRR

Confronto tra test

Prodotto	Screening?	Congeniti	Acquisiti	Abilità nel classificare	Determinare l'estensione	Numero di Tavole	Versioni Pediatriche	Tempo di esecuzione
City University	Si	Si	Si	Si	No	10	No	Medio
Dvorine	Si	Si	No	No	No	23	No	Medio
Hahn Type A		Si	Si	Si	Si	21	Separate	Medio
HRR 4th Edition	Si	Si	Si	Si	Si	24	Si	Veloce
Ishihara (versione 28 tavole)	Si	Si	No	No	No	24	Separata	Veloce
L'Anthony Tritan Album	Si	No	Si	No	Si	5	No	Veloce
SPP1	Si	Si	No	Si	No	19	No	Lento
SPP2	Si	Some	Si	Si	No	12	No	Lento
Farnsworth D15 Color Test	No	Si	Si	Si	Medio/ Forte	16 tappi	Si	Medio/Lento
L'Anthony 15 Color Test	No	Si	Si	Si	Solo lieve	16 tappi	No	Lento

I Nostrí Test

- L'importanza nell'eseguire quești Test, è nella prevenzione, cioè sospettare la presenza di una patología non rilevabile da altri Test
 - In caso di esito positivo inviare il paziente dallo specialista competente
 - In caso di esito negativo dare la corretta informazione riguardante il suo stato percettivo.
- Nel caso di una protanopia o deuteranopia si può consigliare una lente a contatto X-Chrome (lente rigida di colore magenta, t≈ *59*0/700 nm)

77

Breve bibliografia

- Newton I., "New Theory About Light and Colors" in Philosophical transactions of the Royal Society of London, lettera del: 19 febbraio 1672
- YOUNG T., "On the theory of light and colours" in Philosophical transactions of the Royal Society of London, 1802, 92: 12-48
- Lee, Barry B. "The evolution of concepts of color vision." Neurociencias vol. 4,4 (2008): 209-224
- Mílic, Neda & Hoffmann, Míklós & Tómács, Tibor & Novaković, Dragoljub & Milosavljević, Branko., "A Content-Dependent Naturalness-Preserving Daltonization Method for Dichromatic and Anomalous Trichromatic Color Vision Deficiencies." Journal of Imaging Science and Technology. 2005, 59. 105041-1050410.
- Knoblauch K, Normal and Defective Colour Vision. Oxford-England, Oxford University Press; 2003. p 347-353. OLEARI C., Misurare il colore, Milano, Hoepli, 1998
- STEPHEN J. DAIN, "Clinical Colour Vision Tests", in Clin Exp Optom, 2004; 87: 4-5:
- Simunovic MP. Acquired color vision deficiency. Surv Ophthalmol. 2016 Mar-Apr;61(2):132-55.